Inequalities for the gamma function with applications to permanents

نویسندگان

  • Peter J. Grabner
  • Robert F. Tichy
  • Uwe T. Zimmermann
چکیده

The best known upper bound on the permanent of a 0-1 matrix relies on the knowledge of the number of nonzero entries per row. In certain applications only the total number of nonzero entries is known. In order to derive bounds in this situation we prove that the function f : (?1; 1) ! R, deened by f(x) := log ?(x+1) x , is concave, strictly increasing and satisses an analogue of the famous Bohr-Mollerup theorem. For further discussion of such bounds we derive some inequalities for this function. 1 Characterization of log ?(x+1) x The famous theorem of Bohr and Mollerup ((2] pp. 276) characterizes the ?-function by the convexity of its logarithm. For the function f : (?1; 1) ! R, deened by f(x) := log ?(x+1) x , we will prove a similar characterization by its concavity. Let Z ? denote the set of all negative integers. At rst we derive expansions for the function f : C n Z ? ! C, deened by f(z) := log ?(z+1) z , and its derivatives from the following well-known expansions ((2] pp. 274):

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new Ostrowski type fractional integral inequalities for generalized $(r;g,s,m,varphi)$-preinvex functions via Caputo $k$-fractional derivatives

In the present paper, the notion of generalized $(r;g,s,m,varphi)$-preinvex function is applied to establish some new generalizations of Ostrowski type integral inequalities via Caputo $k$-fractional derivatives. At the end, some applications to special means are given.

متن کامل

New inequalities for a class of differentiable functions

In this paper, we use the Riemann-Liouville fractionalintegrals to establish some new integral inequalities related toChebyshev's functional in the case of two differentiable functions.

متن کامل

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

‎Some functional inequalities‎ ‎in variable exponent Lebesgue spaces are presented‎. ‎The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non‎- ‎increasing function which is‎‎$$‎‎int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleq‎‎Cint_0^infty f(x)^{p(x)}u(x)dx‎,‎$$‎ ‎is studied‎. ‎We show that the exponent $p(.)$ for which these modular ine...

متن کامل

The System of Vector Variational-like Inequalities with Weakly Relaxed ${eta_gamma-alpha_gamma}_{gamma inGamma}$ Pseudomonotone Mappings in Banach Spaces

In this paper, we introduce two concepts of weakly relaxed ${eta_gamma-alpha_gamma}_{gamma in Gamma}$ pseudomonotone and demipseudomonotone mappings in Banach spaces. Then we obtain some results of the solutions existence for a system of vector variational-like inequalities with weakly relaxed ${eta_gamma-alpha_gamma}_{gamma in Gamma}$ pseudomonotone and demipseudomonotone mappings in reflexive...

متن کامل

New Jensen and Ostrowski Type Inequalities for General Lebesgue Integral with Applications

Some new inequalities related to Jensen and Ostrowski inequalities for general Lebesgue integral are obtained. Applications for $f$-divergence measure are provided as well.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 154  شماره 

صفحات  -

تاریخ انتشار 1996